Basic Algebra

Algebraic Indices

Simplify

$$8qr^2 \times 3qr = 24q^2r^3$$

You must use the rules of indices when simplifying with algebra

Solving Equations

Solve 3(x + 5) = 21

Expand first

$$3x + 15 = 21$$

Solve for *x*

3x = 6

x = 2

HCF = 5

Substitution

When we substitute values into a formula we take out the variables and put in the numbers.

Where a = -3 and b = 5

You do
$$2 \times -3 = -6$$

And $4 \times 5 = 20$

Then add them together:

$$-6 + 20 = 14$$

Expanding Single Brackets

Expand 3(x + 4 + y)

Multiply in grid method

Х	x	4	у
3	3 <i>x</i>	12	3 <i>y</i>

$$3(x + 4 + y) = 3x + 12 + 3y$$

Expanding

Expanding double brackets that look like single brackets

Expand
$$(x + 1)^2 = (x + 1)(x + 1)$$
Multiply in grid method

х	x	1		
х	x ²	x		
1	х	1		
$= x^2 + x + x + 1 = x^2 + 2x + 1$				

Expanding double brackets

Expand (x + y)(x + y)Multiply in grid method

x	х	у		
х	x ²	xy		
у	ху	y^2		
$= x^2 + xy + xy + y^2 = x^2 + 2xy + y^2$				

When expanding brackets it is

easier to use grid method.

Make sure you simplify at the end

Unit 2:

Algebra

Factorising Single Brackets (Numbers)

Factorise 10x + 15. Divide each term the numbers.

by the **HCF** and close the bracket.

Factorising into a single bracket

Variables and numbers

Divide each term

by the **HCF**s and

close the bracket.

Only 'open the brackets' once all HCFs are found.

Factorising Double Brackets

Factorise the following quadratic expression into double brackets.

$$= \frac{x^2 + 9x + 18}{(x+6)(x+3)}$$

Write a list of factor pairs of the constant term.

Choose the pair that add to make "+9".

1, 18 2,9 You can put these 3, 6 in either bracket!

Factors of 18

Why must the factor pair be ... ? positive × positive negative × negative

Linear Sequence

Find the *n*th term of the following sequence:

14, 12, 10, 8, 6

-2 -2 -2 = -2n

To find the constant we find the term before The 1st term which is 16

Quadratic Sequence

Example: Find the formula for the nth term of the sequence:

The second difference is **CONSTANT** so the formula for the nth term must contain n². The number in front of n² is half the constant difference.

The nth term is = -2n + 16

Factorising

Factorise 2ab + 4b.

HCF = 2

HCF = b

Find the **HCF** of $\rightarrow 2ab + 4b \leftarrow$

the variables. = 2b(a + 2)

Sequences