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Algebra is of ten used 1o
PROVE.. establish the truth (ta prove
something)

"SHOW THAT THE SUM OF TWO
CONSECUTIVE NUMBERS IS
ALWAYS AN ODD NUMBER"

"PROVE THAT THE SUM OF TWOQ
CONSECUTIVE NUMBERS IS
ALWAYS AN ODD NUMBER"

1+2=3

2 3=5(/
5:6: 11(\/ “rel

We can give any number, any letter. In this
case, lets pick the Ieﬁe

Therefore the number directly after nis

101 + 102 = 203

We have SHOWN that this of 2
works. We have not proved it
works.

There could be, at some point, two
consecutive numbers in fact give us
an EVEN number

n+n+1=z2n+1

"SUM OF TWO CONSECUTIVE NUMBERS.."

“2n" is the nth term for the multiples

2n + 1 is one mere than the multiples
of 2, the edd numbers.

This PROVES that the statement is
always true for any value of n

Identity:

An identity in maths is represented by the = symbol

An identity is an equation which is always true no matter which values

are chosen

|(x+1)25x2+2x+1

STEP 1: EXPAND |

Prove that (3n + 1) - (3n - 1)* is a multiple of 4 for
all positive integer values of n*

Prove that (3n + 1)? - (3n - 1)? is a multiple of 4 for
all positive integer values of n*

hlight the key words and

(3v' * l:v = (3." s :)

= (9

=(Bn+1)(3n+1)-(3n-1)(3n-1)

+6n+1)-(9n*-6n+1)

STEP 2: SIMPLIFY |

= 12n

=(Ont+6n+1)-(On*-6n+1)

STEP 3: FACTORISE |

12n=4 x 3n

1

STEP 3: JUSTIFY |

4 x 3n > always divisible by
4 ond hence a multiple of 4

(U

Further

Algebra

A function is something which provides a rule on how to
map inputs to outputs.

From primary school you might have seen this as a

Input
| x

Functions

Algebraic Proof

integer

Expand

Simplify

Justify

Prove that
(h+12-(n-12+1
is always odd for all positive

values of n

=m+DM+1D)-Mm-1)n-1)+1
=m*+2n+1)-m2-2n+1)+1

=4n+1
4 X n is always even

Any even number add 1 is odd

-

Name of the function
{usually f or g)

‘function machine’.

Output

2x
-
I"Tt OHTM
(%) = 2x

If p=3xandx =2

|You are given that f(x) =3x+1 |

2
Write p in terms of y
p=3x

_a(Y This means we need to substitute x for 1
p=3 (2)

If f(a) = 38, whatis a?

x?+2=138
x% =36
x =16

Anything inside the
bracket applies just
to the x

3 [Findf() =31 +1=3+1=4
2
f(x) =x24+2 If f(x) =x + 1 whatis:

fx+D=x+1D+1=x+2
fx-1D)=x-1)+1=x
fx®) =x?+1
fx)2=kx+12=x?+2x+1
fx)=2x+1
2f(x)=2(x+1)=2x+2

Anything outside the
bracket applies just
to the whole function

—~
| Inverse Functions | STEP 1: Write the
output f(x) asy
B it f(x) =2x+1 STEP 2: Get the input in
[ > e . 1 terms of the output
2 6 find £x) (make x the subject).
Soif f(x) = 3x, then the inverse function is : y = Zx + 1 STEP 3: Swﬂp ¥y bﬂCk for‘
PN y—1=2x x and x back for f~2(x).
_y—1 1 _x—1
x=t—= [ ==
Composite Functions
Given f(x) = 2x || Given f(x) = 2x f)=x+1
g(x):x+]_ g(x) =x+1 g(x) = 2x
find fg(2) find fg(1) Find gf (x)
flx)=x+1
g2)=2+1=3 g =1+1=2 | gx+1)=2(x+1) = 2x +2
f3)=2x3=6 f=2x2=4 || gfx) =2x+2
Functions




