Number

Number Problems

A Factorial is the result of multiplying a sequence of descending integers.

 $4! = 4 \times 3 \times 2 \times 1$

Estimation

To estimate you need to be confident with rounding and significant figures.

Estimate 0.456×145 by rounding to 1 significant figure.

 $0.5 \times 100 = 50$

HCF and LCM

Find the HCF and LCM of 16 and 24

Step 1: Express each number as a product of its prime factors.

Put the prime factors into Venn diagram

HFC = product of the intersection: 2 x 2 x 2 = 8

LCM = product of all the numbers 2 x 2 x 2 x 2 x 3
=48

Writing numbers in standard form

Numbers in standard form always have to be bigger than 0 and smaller than 10

Example: Write 124, 500, 000 in standard form

 1.245×10^{8}

Example: Write 0.005678 in standard form

 5.678×10^{-3}

Standard Form

Multiplying and Dividing in Standard Form

$$(2.1 \times 10^3) \times (3 \times 10^4)$$

 $(9 \times 10^3) \div (3 \times 10^4)$

Multiply the numbers and add the indices together

2.1 x 3 = 6.3 3+4 =7

 6.3×10^{7}

Divide the numbers together and subtract the indices

9/3 = 3 3-4 = -1

 3×10^{-1}

Adding and Subtracting in Standard Form

You have to change them back into normal numbers.

$$2.1 \times 10^{4} + 3.2 \times 10^{2} =$$

$$21000 + 320$$

$$= 21320$$

$$= 2.132 \times 10^{4}$$

Basic Rules of Indices

 $a^m \times a^n = a^{m+n}$

 $\frac{a^5}{a^3}=a^2$

 $(a^2)^3 = a^6$

 $a^1 = a$

 $a^0 = 1$

Fractional Rules of Indices

 $x^{\frac{1}{2}} = \sqrt{x}$

 $\chi^{\frac{1}{3}} = \sqrt[3]{\chi}$

 $x^{\frac{1}{4}} = \sqrt[4]{x}$

If a^{-b} then we write as $\frac{1}{a^b}$

$$8^{\frac{2}{3}} = \left(8^{\frac{1}{3}}\right)^2 = 2^2 = 4$$

Unit 1:

Number

A surd is an irrational number. It doesn't terminate (stop) or repeat.

A surd is written with a square root sign:

 $\sqrt{2}$

Simplifying a surd

Simplify $\sqrt{200}$

Step 1: Find two factors of 200 one must be the biggest square number you can find!

 $\sqrt{100} \times \sqrt{2}$

The root 100 simplifies to 10 and the multiplication sign disappears (Like in algebra) so you are left with:

 $10\sqrt{2}$

Multiplying Surds

To multiply surds you just multiply
the numbed under the square root
sign together

$$\sqrt{3} \times \sqrt{7} = \sqrt{21}$$

For more complicated examples you must multiply the numbers first and then the surds

 $2\sqrt{3} \times 4\sqrt{7} = 8\sqrt{21}$

Rationalising the denominator

 $\frac{4+\sqrt{5}}{\sqrt{5}}$

To rationalise the denominator you have to remove the surd from the denominator.

You do this by multiplying numerator and denominator by the surd

$$\frac{4+\sqrt{5}}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}$$

$$=\frac{4\sqrt{5}+5}{5}$$

Indices